Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus.

Identifieur interne : 000206 ( Main/Exploration ); précédent : 000205; suivant : 000207

Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus.

Auteurs : Marianne Daou [France] ; François Piumi [France] ; Daniel Cullen [États-Unis] ; Eric Record [France] ; Craig B. Faulds [France]

Source :

RBID : pubmed:27260365

Descripteurs français

English descriptors

Abstract

UNLABELLED

The genome of the white rot fungus Pycnoporus cinnabarinus includes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated from Phanerochaete chrysosporium The glyoxal oxidase of P. chrysosporium is physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2 and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases of P. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced in Aspergillus niger strain D15#26 (pyrG negative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein for PciGLOX1 and PciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The two P. cinnabarinus enzymes generally exhibited similar substrate preferences, but PciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyde.

IMPORTANCE

This study addresses the poorly understood role of how fungal peroxidases obtain an in situ supply of hydrogen peroxide to enable them to oxidize a variety of organic and inorganic compounds. This cooperative activity is intrinsic in the living organism to control the amount of toxic H2O2 in its environment, thus providing a feed-on-demand scenario, and can be used biotechnologically to supply a cheap source of peroxide for the peroxidase reaction. The secretion of multiple glyoxal oxidases by filamentous fungi as part of a lignocellulolytic mechanism suggests a controlled system, especially as these enzymes utilize fungal metabolites as the substrates. Two glyoxal oxidases have been isolated and characterized to date, and the differentiation of the substrate specificity of the two enzymes produced by Pycnoporus cinnabarinus illustrates the alternative mechanisms existing in a single fungus, together with the utilization of these enzymes to prepare platform chemicals for industry.


DOI: 10.1128/AEM.00304-16
PubMed: 27260365
PubMed Central: PMC4968546


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus.</title>
<author>
<name sortKey="Daou, Marianne" sort="Daou, Marianne" uniqKey="Daou M" first="Marianne" last="Daou">Marianne Daou</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Piumi, Francois" sort="Piumi, Francois" uniqKey="Piumi F" first="François" last="Piumi">François Piumi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cullen, Daniel" sort="Cullen, Daniel" uniqKey="Cullen D" first="Daniel" last="Cullen">Daniel Cullen</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA, Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA, Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Record, Eric" sort="Record, Eric" uniqKey="Record E" first="Eric" last="Record">Eric Record</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Faulds, Craig B" sort="Faulds, Craig B" uniqKey="Faulds C" first="Craig B" last="Faulds">Craig B. Faulds</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France craig.faulds@univ-amu.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27260365</idno>
<idno type="pmid">27260365</idno>
<idno type="doi">10.1128/AEM.00304-16</idno>
<idno type="pmc">PMC4968546</idno>
<idno type="wicri:Area/Main/Corpus">000209</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000209</idno>
<idno type="wicri:Area/Main/Curation">000209</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000209</idno>
<idno type="wicri:Area/Main/Exploration">000209</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus.</title>
<author>
<name sortKey="Daou, Marianne" sort="Daou, Marianne" uniqKey="Daou M" first="Marianne" last="Daou">Marianne Daou</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Piumi, Francois" sort="Piumi, Francois" uniqKey="Piumi F" first="François" last="Piumi">François Piumi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cullen, Daniel" sort="Cullen, Daniel" uniqKey="Cullen D" first="Daniel" last="Cullen">Daniel Cullen</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA, Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA, Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Record, Eric" sort="Record, Eric" uniqKey="Record E" first="Eric" last="Record">Eric Record</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Faulds, Craig B" sort="Faulds, Craig B" uniqKey="Faulds C" first="Craig B" last="Faulds">Craig B. Faulds</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France craig.faulds@univ-amu.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohol Oxidoreductases (chemistry)</term>
<term>Alcohol Oxidoreductases (genetics)</term>
<term>Alcohol Oxidoreductases (metabolism)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Aspergillus niger (metabolism)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Organisms, Genetically Modified (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Pycnoporus (enzymology)</term>
<term>Pycnoporus (genetics)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcohol oxidoreductases (composition chimique)</term>
<term>Alcohol oxidoreductases (génétique)</term>
<term>Alcohol oxidoreductases (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Aspergillus niger (métabolisme)</term>
<term>Organismes génétiquement modifiés (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Pycnoporus (enzymologie)</term>
<term>Pycnoporus (génétique)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Pycnoporus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Pycnoporus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pycnoporus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Protéines fongiques</term>
<term>Pycnoporus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Aspergillus niger</term>
<term>Organisms, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Aspergillus niger</term>
<term>Organismes génétiquement modifiés</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Oxidation-Reduction</term>
<term>Phylogeny</term>
<term>Sequence Alignment</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Oxydoréduction</term>
<term>Phylogenèse</term>
<term>Spécificité du substrat</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>UNLABELLED</b>
</p>
<p>The genome of the white rot fungus Pycnoporus cinnabarinus includes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated from Phanerochaete chrysosporium The glyoxal oxidase of P. chrysosporium is physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2 and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases of P. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced in Aspergillus niger strain D15#26 (pyrG negative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein for PciGLOX1 and PciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The two P. cinnabarinus enzymes generally exhibited similar substrate preferences, but PciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyde.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>IMPORTANCE</b>
</p>
<p>This study addresses the poorly understood role of how fungal peroxidases obtain an in situ supply of hydrogen peroxide to enable them to oxidize a variety of organic and inorganic compounds. This cooperative activity is intrinsic in the living organism to control the amount of toxic H2O2 in its environment, thus providing a feed-on-demand scenario, and can be used biotechnologically to supply a cheap source of peroxide for the peroxidase reaction. The secretion of multiple glyoxal oxidases by filamentous fungi as part of a lignocellulolytic mechanism suggests a controlled system, especially as these enzymes utilize fungal metabolites as the substrates. Two glyoxal oxidases have been isolated and characterized to date, and the differentiation of the substrate specificity of the two enzymes produced by Pycnoporus cinnabarinus illustrates the alternative mechanisms existing in a single fungus, together with the utilization of these enzymes to prepare platform chemicals for industry.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27260365</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>82</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2016</Year>
<Month>08</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus.</ArticleTitle>
<Pagination>
<MedlinePgn>4867-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00304-16</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">The genome of the white rot fungus Pycnoporus cinnabarinus includes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated from Phanerochaete chrysosporium The glyoxal oxidase of P. chrysosporium is physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2 and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases of P. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced in Aspergillus niger strain D15#26 (pyrG negative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein for PciGLOX1 and PciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The two P. cinnabarinus enzymes generally exhibited similar substrate preferences, but PciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyde.</AbstractText>
<AbstractText Label="IMPORTANCE">This study addresses the poorly understood role of how fungal peroxidases obtain an in situ supply of hydrogen peroxide to enable them to oxidize a variety of organic and inorganic compounds. This cooperative activity is intrinsic in the living organism to control the amount of toxic H2O2 in its environment, thus providing a feed-on-demand scenario, and can be used biotechnologically to supply a cheap source of peroxide for the peroxidase reaction. The secretion of multiple glyoxal oxidases by filamentous fungi as part of a lignocellulolytic mechanism suggests a controlled system, especially as these enzymes utilize fungal metabolites as the substrates. Two glyoxal oxidases have been isolated and characterized to date, and the differentiation of the substrate specificity of the two enzymes produced by Pycnoporus cinnabarinus illustrates the alternative mechanisms existing in a single fungus, together with the utilization of these enzymes to prepare platform chemicals for industry.</AbstractText>
<CopyrightInformation>Copyright © 2016 Daou et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Daou</LastName>
<ForeName>Marianne</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Piumi</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cullen</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>USDA, Forest Products Laboratory, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Record</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Faulds</LastName>
<ForeName>Craig B</ForeName>
<Initials>CB</Initials>
<AffiliationInfo>
<Affiliation>Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France craig.faulds@univ-amu.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>07</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D000429">Alcohol Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.3.-</RegistryNumber>
<NameOfSubstance UI="C052371">glyoxal oxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000429" MajorTopicYN="N">Alcohol Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001234" MajorTopicYN="N">Aspergillus niger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030781" MajorTopicYN="N">Organisms, Genetically Modified</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055494" MajorTopicYN="N">Pycnoporus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27260365</ArticleId>
<ArticleId IdType="pii">AEM.00304-16</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00304-16</ArticleId>
<ArticleId IdType="pmc">PMC4968546</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Arch Biochem Biophys. 2005 Jan 1;433(1):227-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15581579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8433984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Dec 18;6:10197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2006 Aug 14;341(11):1828-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16697986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2000 Sep;42(1):39-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11000429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1987 Jan;206(1):71-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3472035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Nov;72:124-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24915038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2015 Apr;108:73-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25543085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2012 Feb 10;50(2):143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22226201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2010 Sep 13;9:68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20836876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jun 18;15:486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24942338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Apr;87(8):2936-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 Dec;268(23):6114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11733005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):4871-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 17;274(51):36226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10593910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1992;216:447-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1479914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Nov;177(21):6106-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Mol Biol. 2010;1(1):36-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21968746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Mar 21;6(1):41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23514094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 May;169(5):2195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3553159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Jan 12;271(2):681-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8557673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2012 Dec;40(4):258-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23323052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7411-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8346264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2009 Mar-Apr;27(2):185-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19100826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Feb;272(6):639-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15578222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Nov;81(22):7802-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26341198</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Provence-Alpes-Côte d'Azur</li>
<li>Wisconsin</li>
</region>
<settlement>
<li>Marseille</li>
</settlement>
<orgName>
<li>Université d'Aix-Marseille</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Daou, Marianne" sort="Daou, Marianne" uniqKey="Daou M" first="Marianne" last="Daou">Marianne Daou</name>
</region>
<name sortKey="Faulds, Craig B" sort="Faulds, Craig B" uniqKey="Faulds C" first="Craig B" last="Faulds">Craig B. Faulds</name>
<name sortKey="Piumi, Francois" sort="Piumi, Francois" uniqKey="Piumi F" first="François" last="Piumi">François Piumi</name>
<name sortKey="Record, Eric" sort="Record, Eric" uniqKey="Record E" first="Eric" last="Record">Eric Record</name>
</country>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Cullen, Daniel" sort="Cullen, Daniel" uniqKey="Cullen D" first="Daniel" last="Cullen">Daniel Cullen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000206 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000206 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27260365
   |texte=   Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27260365" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020